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An experiment on boundary mixing. Part 2 
The slope dependence at small angles 
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(Received 15 January 1990 and in revised form 4 February 1992) 

Experiments of the type described by Phillips at al. (1986) were performed using 
different slopes with the aim of examining the slope dependence of the buoyancy and 
volume transports, particularly at small slopes. The new observations confirmed the 
general flow patterns described for experiments conducted at  a fixed slope, but a 
reconsideration of the local balances suggest that the buoyancy flux a t  small slopes 
8 is proportional to (KN)fsin 8, where K is the turbulent diffusivity, and the volume 
flux associated with the overall convergence flow is linear with depth and 
proportional to ( ~ i / N h )  sin 8, where h is the thickness of the pycnocline. These differ 
in their dependence on the slope suggested (but not tested) in Phillips et al., and are 
generally consistent with measurements over a range of slopes from 7.1" to 23.5'. 

1. Introduction 
The oceans are generally stably stratified and limited laterally by sloping 

boundaries. The flow along these boundaries is usually turbulent ; the turbulence 
may be generated by large-scale gravity currents or lateral currents, breaking of 
internal waves incident upon the boundaries, mean tidal flows or other mechanisms. 
Away from the bottom boundaries, turbulence decays so that we have a turbulent 
boundary-layer region bounding a much larger region of generally non-turbulent 
flow. A schematic diagram depicting this geometry and the flow patterns described 
below is provided in figure 1.  

It was suggested as early as 1966 by Walter Munk that boundary mixing may 
contribute significantly to the overall vertical mixing in a stratified ocean, the largest 
cross-isopycnal mixing occurring in boundary mixed layers which are then advected 
into the interior. This hypothesis has been explored in several studies that include 
field observations (Wunsch 1972; Armi 1978; Gregg & Sanford 1980; and many 
others), laboratory experiments (Ivey & Corcos 1982; Thorpe 1982; Phillips, Shyu & 
Salmun 1986; Ivey 1987; and others), and theoretical analyses (Thorpe 1987; 
Garrett 1990; Woods 1991). Mixing a t  the boundaries may be the result of 
interactions between mean flows and the rough bottom or due to the reflection of 
internal waves. When these waves are reflected off sloping boundaries the vertical 
shear is enhanced, leading to possible shear flow instabilities and wave breaking, 
providing significant amounts of energy to drive the mixing (Cacchione & Wunsch 
1974; Stigebrant 1976; Garrett 1979; Eriksen 1985; Ivey & Nokes 1989; and several 
others). Many other studies have also concentrated on the importance of boundary- 
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FIGURE 1.  A schematic diagram of the flow inside the boundary layer and the stratified 
ambient regions. 

layer mixing in accounting for the overall mixing observed in estuaries, lakes and 
fjords (Caldwell, Brubaker & Neal 1978 ; Marmorino, Danos & Maki 1980). 

The first laboratory investigation to study the process of boundary mixing using 
a boundary of fixed uniform slope (9.4O) was undertaken by Phillips et al. (1986, 
hereinafter referred to as PSS), with the turbulent boundary layer along the slope 
being generated by an oscillatory mat. It was evident that in the boundary-layer 
region, the lateral mixing due to turbulence immediately causes a reduction in the 
gradients of salt in this layer, inducing a perturbation in the stratification of the 
fluid. Isopycnals cannot remain horizontal and hence horizontal variations of 
buoyancy occur. This implies that the fluid near the outer edge is denser than the 
fluid at the same level in the ambient surroundings and that the fluid near the bed 
is less dense than the outside fluid at  this level. In response to these variations in the 
buoyancy field an internal circulation in the boundary layer develops whereby the 
fluid nearest the wall moves upwards while the fluid in the outer part of the boundary 
layer moves downwards, constituting one of the components of the mean flow in the 
turbulent boundary layer. The mean density in the boundary layer tends to become 
uniform in the direction normal to the slope and this tendency is accentuated as 
mixing proceeds. 

This internal circulation enhances the dispersion of salt up and down the slope 
beyond that produced by turbulence alone, which results in the spreading of 
isopycnals in the slope direction beyond the extent of the original ambient 
stratification. Denser fluid is dispersed above the level of the ambient stratification 
and less dense fluid below, which induces an overall convergence flow along the slope 
with entrainment of outside fluid into the boundary layer a t  the top and bottom and 
by intrusion of mixed boundary fluid into the ambient stratified region. 

The internal mean flow in the boundary layer has therefore two superimposed 
components : the internal counterflow streaming produced by the turbulent mixing 
across the layer and the net flow convergence along the slope that balances the 
dispersion along it. The resulting intrusion of boundary-layer fluid into the ambient 
regions will weaken the density gradients there so that the density stratification that 
surrounds the turbulent boundary layer gradually changes, affecting ultimately the 
flow inside the boundary layer as well as its growth. The layer of boundary-mixed 
fluid may then be carried away over large horizontal distances into the interior of the 
body of fluid, affecting in turn its properties far away from the boundary regions. 
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The basic requirement needed to establish the mechanism described above is a 
divergence of the turbulent density flux along the slope within the boundary layer. 
In general this density flux will vary along the boundary layer if the density 
gradients change with distance along the slope, as is the case when the stratification 
is non-uniform with depth, if the strength of the source of turbulence is not constant 
along the boundary as may be expected in the oceans, or if the angle of the sloping 
boundary changes significantly ovcr short distances. 

The early experiments were conducted at a single slope, while the stratification of 
the ambient fluid and the strength of mixing (characterized by the frequency and 
amplitude of the mat oscillations) were varied over as wide a range as possible. A 
simple scaling analysis was developed based essentially upon the diffusive laminar 
boundary layer in a uniformly stratified fluid with a sloping boundary (Phillips 
1970). This provided a satisfactory collapse of measurements of the distributions of 
buoyancy and volume fluxes and also suggested how these fluxes and the boundary- 
layer thickness should vary with the angle of the slope. The original intent of the 
experiments to be described here was simply to check this slope dependence by 
rebuilding the apparatus several times to give different bed angles but it transpired 
that the fluxes measured at different slopes varied in a manner opposite to that 
described by the PSS scaling. At small slopes, the buoyancy and volume fluxes were 
expected to  increase as the slope decreased but, as will be described later, they were 
found to decrease. It became evident that the scaling in PSS could not be pertinent 
when the bottom slope is small and that led to a revision of the model’s equations, 
the assumptions used there, as well as thc interpretations of the laboratory 
experiments. In  the next section, the approach of PSS is revised for the limit of small 
slopes, after which the new measurements will be described. 

2. The governing equations 
Consider the turbulent boundary layer above a bed with constant slope 0 with 

respect to the horizontal, outside which the ambient fluid is stratified with p = p(2 )  
as in figure 2. When the internal timescales characteristic of the turbulence in the 
boundary layer are small compared to the characteristic timescales for the changes 
in both the ambient stratification and the flow generating the turbulence, then the 
mean flow in the turbulent boundary layer can be considered steady. Furthermore, 
when the mechanism generating the turbulence is uniform along the slope, the 
induced mean flow is two-dimensional in the (2, y)-plane of figure 2. 

Suppose that the region of significant stratification in the ambient fluid extends 
over a vertical distance h, so that the distance up and down the slope over which the 
turbulent boundary layer modifies this stratification is L - h/sinB. The boundary- 
layer thickness scale is represented by H so that the aspect ratio of the region is 

H H  
E = - - -sine. 

L h  

We are particularly interested in cases of relatively small slope so that 8 < 1 
although H and h may be comparable. The sketch in figure 2 shows the coordinate 
systems of the ambient and boundary regions (X, 2) and (2, y) respectively. They are 
related by the coordinate transformation defined by 

X = xcose-ysin8, 2 = xsinO+ycosO. 
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X 

FIQURE 2. Definition of coordinate system. 

For the turbulent flow the mean momentum equations reduce to 

au au 1 ap gp . 
ax a Y  Poax Po 

u-+v-=-----ssmB- 

in the direction of the slope, and in the normal direction 

where u, v, and u’, v‘ represent the mean flow and turbulent fluctuations respectively, 
p and po represent the mean density field and the reference density, and p is the mean 
pressure field. The mean buoyancy distribution in the boundary layer is governed by 
the following equation : 

where B = -g(p-po) /po and b’ = -gp’/po are the mean and fluctuating buoyancy 
fields respectively. The equations of motion are completed with the continuity 
equation V - u  = 0, in virtue of which we can define the stream function $ for the 
mean flow such that u = a$/ay and v = -a$/ax. 

We assume that the turbulent fluxes of momentum and buoyancy can be 
expressed in terms of an eddy viscosity v(y) and an eddy diffusivity ~ ( y ) .  In  the 
regions surrounding the boundary layer, referred to as ambient or interior regions, 
the stratified fluid is not turbulent and the flow there is in essence inviscid and non- 
diffusive so that v ( y ) , ~ ( y )  = 0 when y > H .  Very near the boundaries, the eddy 
coefficients are also small, frequently being assumed to  be linear in y. An equation for 
the mean vorticity of the flow (in the axial or z-direction) is readily obtained by cross- 
differentiation of the momentum equations, yielding 

where w = -V2$. The mean buoyancy equation, (3), can then be expressed as 

(5) 

The ambient density field may have a variety of forms. When it varies linearly 
with depth, the equations simplify greatly and with appropriate specifications for 
u(y) and K ( Y )  they can be solved analytically (Thorpe 1987; Garrett 1990; Woods 
1991). I n  the experiments, aB1a.Z = N 2  is not constant, but has a single maximum. 



An experiment on boundary mixing. Part 2 359 

The boundary-layer thickness and the distributions of u(y) and ~ ( y )  are not known 
a priori, but the governing equations can be used to determine characteristic scales 
of motion in terms of which the experimental results are to be described. 

We first concentrate attention on the vicinity of the level of maximum 
stratification where the ambient stability frequency, defined as usual by N2 = 
( - g / p o )  (ClpplaZ), is locally equal to a constant. In this vicinity, 

-- - N2sin8 ax 
and other derivatives along the layer are small because the turbulence is locally 
homogeneous in the x-direction (since the turbulent source is constant along the 
boundary). There then, (4) and ( 5 )  reduce to 

and 

0 = (7)  

respectively. These equations express the balances between the generation of 
vorticity by the horizontal gradient of buoyancy and turbulent diffusion, and 
between the divergence of the turbulent flux normal to the boundary and advective 
buoyancy flux along the slope. The second may be integrated in the y-direction and 
with @ = 0 and = - ~ ( y ) a B / a y  = 0 on y = 0, we have 

aB 
N2 sin O@(y) = ~ ( y )  - 

a Y  
(9) 

Since the turbulent buoyancy flux vanishes outside the layer, @ = 0 when y +  H ;  the 
boundary layer in this vicinity has zero net volume flux. Hence, the flow in the 
boundary layer described locally by these equations is entirely made up of the lateral 
shear flow component due to the turbulent mixing normal to the slope. 

The total upslope buoyancy flux may be found by adding the diffusive flux and 
advective fluxes, i.e. 

The advective buoyancy flux along the layer 

from (9). The total upslope buoyancy flux is then 

FB = - ~ ( y )  N2 sin 8 + - (N2  sin B)-'] dy, 1 [ (3 
an elegant result due to Garrett (1990). Alternatively 
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Equations (7) and (9) can be combined into a single equation for the mean stream 
function, i.e. 

the terms of which arise respectively from the diffusion of mean vorticity and the 
generation of it by buoyancy gradients normal to and parallel to the sloping 
boundary. PSS assumed that all three terms in ( 1 4 )  are comparable in magnitude so 
that if 9, represents the scale for the stream function distribution and v ,  K the scale 
values of v(y), K ( Y )  in the layer, then 

which leads to 

$s N 2  sin2 0$, - N 2  cos I3 sin 8, 
K 

- 
H - (  V K  ) 

N 2  sin2 8 

and +s - K cot 8. (17)  

This scaling clearly cannot be appropriate in the limit of very small slope, B + O .  
Moreover, the velocity scale for the flow up and down the slopc, 

+JH cc (cos 8/sint 8)  

increases without limit while in fact this circulation should vanish as 8+0.  Thus, in 
(14) even if $ were to remain finite as 8 --f 0, the second term on the left vanishes more 
rapidly than the term on the right, and at  small slopes the generation of vorticity is 
primarily the result of buoyancy gradients along thc slope with redistribution across 
the layer by turbulent diffusion. For very small angles. then, thc case of our primary 
interest here, we must have 

+ N 2  sin2 8+., 
H 4  K 

v s  - N 2  cos 8sin 8 $ 

or that +s -7 cos 8 sin 8, (19) 
N 2 H 4  

rather than (17) .  We note that (19) clearly does not give separate scales for $, and 
H - other physical considerations will be used to estimate the latter. We note 
incidentally that $s is very sensitive to H and the second term in the buoyancy flux 
expression (13) even more so (as H ' ! ) ,  even though this term will be shown to be 
negligible as 8+0 provided H remains finite. Note also from (13) that, as Garrett 
(1990) points out, if K ( Y )  decreases rapidly across the boundary layer from its scale 
value K (at the boundary, say) then the advective flux represented by the second 
term in the integral may well be dominant. Howcvcr, our shadowgraph observations 
of the boundary layer (a photograph is given in figure 4 of PSS) suggest rather 
uniform turbulence below a well-defined undulating front. Above this front, finc- 
scale density structures could be seen in fluid that had detrained and was drifting 
away in a much more quiescent manner as the structures gradually disappeared. 
These observations led us to believe that K ( Y )  does not vary rapidly within the active 
turbulent region. It is also possible. as Woods (1991)  has pointed out, that at some 
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intermediate slopes the balance implied by (15) may be attained, but if the two terms 
in (12) or (13) are comparable at these slopes, the overall dependence of F, upon 8 
may not be simple since the two terms may involve different slope factors. 

The physical quantities that are available to us in this problem are the 
stratification of the fluid, characterized by N ,  the turbulence characterized by K (or 
v) and the angle of the slope, 8. On dimensional grounds the lengthscale that can be 
constructed from these is 1, N ( ~ / N ) v ( 8 ) ,  which is presumably finite for all values of 
8, where f(8) must be determined from experiments, for instance. For the case in 
which turbulence is generated along a flat bottom boundary in a stratified fluid 
1, = ( K / N ) ~  and it is defined as the distance over which buoyancy forces become 
important. This is the Ozimdov scale, also referred to as the ‘overturning’ scale 
(Turner 1979). 

In the experiments to be described in the next section, the boundary layer along 
the sloping boundary was established very rapidly for all slopes as the turbulence was 
first turned on. This indicated that, initially at least, the thickness of the boundary 
layer could only depend on N and K ,  as for the flat-bottom case, so that H scaled with 
I,. In PSS it was shown that at a fixed slope of 9.4’ the boundary-layer thickness 6, 
defined by the average position of the turbulent interface, scaled adequately as 
(KIN) :  cc (wad /N) i ,  though the results presented there included the (sin 8)-i factor 
suggested by (16), which we have now seen to be untenable in the small-slope limit. 
Although the thickness of the boundary layer was not measured in such detail as it 
was in PSS, there was no apparent dependence of 6 on the slope over the range 7.1’ 
to 23.5O. Removal of the (sine)-: factor gives 

We therefore take the scale depth H (  a 6 )  as 

H = ( K / N ) ~ ,  

so that $, = K cos 8 sin 8, (22) 

where we have reasonably assumed that the turbulent Prandtl number is O( 1) .  

buoyancy variation across the boundary layer. We obtain 
We now return to (9) and use the scales defined above to determine the scale of the 

or using (22) (All), = HN2 cos 8 sin2 8. (24) 

The total buoyancy transport across the level of maximum stratification can be 
found from (12) or (13). With the scales defined by (21) and (22) or (24), the first 
(diffusive) term scales as (a): sin 8 and the advective term as ( K N ) ~  cos2 6 sin3 B ; the 
latter clearly becomes insignificant as 8 + 0. 

Consequently in spite of the caveats expressed following (19), the angular 
dependences alone are sufficient to assure us that for small slopes, the buoyancy 
transport is mainly due to turbulent dispersion and that the role of the internal 
circulation is negligible in enhancing the dispersive characteristic of a turbulent 
boundary layer along a long sloping boundary when the density stratification is 
linear with depth. The question of whether the slopes used in these experiments are 
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indeed ‘small enough’ will be considered a t  the end of $3  in the light of the 
magnitudes of the measured fluxes. The inefficiency of the internal circulation in 
transporting mass a t  low angles seems to be related to the weakening of the 
stratification inside the boundary layer due to the mixing process. The reduction in 
the density gradients is expected when the turbulence is well developed and when the 
turbulent region is relatively thin, as was the case in the present experiments. The 
inefficiency of the secondary circulation was first noted by Garrett (1990). Equations 
(22) and (23) explicitly show that the buoyancy variations across the boundary layer 
inside the layer are reduced by a factor sin2 0 from their scale in the ambient region 
which is HN2 cos 8. The advective buoyancy flux will then be reduced accordingly. 
However, as Garrett (1990) and Woods (1991) point out, there may exist a range of 
larger angles of bottom slopes for which the advective flux may make a significant 
contribution to the total flux of buoyancy if the numerical values of $ (Y) /$~  in (13) 
are not too small. 

The total buoyancy transport can be specified in terms of an overall dispersion 
coeficient K,  as 

and from (12) or (13) K ,  z K ,  (26) 

the average of the diffusivity K ( Y )  across the boundary layer, when the advective 
contribution is neglected, as is certainly appropriate a t  small slopes. 

As mentioned previously, when the stratification in the ambient fluid extends only 
over a limited region, in addition to  the internal streaming motion there is the overall 
convergence in the boundary layer produced by the diffusion of buoyancy somewhat 
above and below the ambient pycnocline, leading to intrusion of fluid into it. We 
want to consider next the volume fluxes associated with this component of the flow. 
When N is locally constant everywhere the turbulent fluxes 677 vanish both a t  
y = 0 and y = S( K H ) ,  so that the mean volume transport defined by 

vanishes. Experiments using a non-uniform density stratification confirmed that the 
net volume flux in the boundary layer vanished a t  the level where a N / a Z = O ,  
hereafter denoted by 2,. Thus, as stated in PSS, the existence of a local region over 
which N x constant still results in the presence of a level a t  which the volume flux 
vanishes and, to first approximation? the scaling arguments of the present section 
hold. 

If u, represents the velocity scale of the convergence motion (at the edge of the 
pycnocline) then the overall diffusion of buoyancy outwards balances the 
convergence inwards. Over the timescales that characterize the turbulence the mean 
buoyancy distribution is quasi-stationary and can be described appropriately by 

We note that in (28) the possible effects of the secondary circulation on the overall 
convergence are included in K,. We also note that when N 2 ( Z )  can be approximated 
by a Gaussian function (cf. $3) then the solution for u, is approximately a linear 
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function of the distance along the slope, x.  This is in agreement with the experimental 
results shown in figure 11 and discussed below. 

We can use (28) to obtain the scale for u, as 

u, - KZIL, (29 1 
where L - hlsin 8 and K, is given by (25). The volume transport associated with the 
convergent flow, from (27) is then 

H H sin 8 
L h '  

F, z u,6 N K,- N Kz- 

(31) 
K i  

or using (21) and (26) Fv - T s i n  8, 
Nrh 

for small angles. 
We finally note a posteriori that the terms that were neglected in the boundary- 

layer type of approximation to the vorticity equation (4), mainly the advection of 
vorticity and the diffusion of vorticity up and down the slope, are either of O(sin3 8) 
or of O(sin5 8). These are to be compared with the terms that were kept which are of 
O( sin 0). 

3. Laboratory experiments and results 
3.1. Experiments 

The experiments were conducted in the rectangular tank made of glass walls framed 
in metal and mounted on a horizontal table used by PSS in the original experiments 
with a bed slope of 9.4" (hereinafter referred to as O,,). Details of the experimental 
setting, instruments and measuring techniques can be found in PSS. Here we 
summarize the experimental work and describe the new observations and results. 
The tank was found appropriate to run experiments with slopes of O1 = 7.1", 
O2 = 16.35" and e3 = 23.5", where the angle 8 is defined by the inclination of the sloping 
boundary to the horizontal. Variation in the slope was achieved by rebuilding the 
rigid ramp that provided support for the sloping bed, by constructing a new 
oscillating bed and by realigning the motor and drive system for each angle. We 
would have liked to make measurements at even smaller angles than 7.1" to be sure 
that the slopes were indeed in the range consistent with the small-slope 
approximation, but the restricted length of the tank and the need to maintain an 
adequate depth precluded this. As in the original experiments, the fluid system 
consisted of two layers, one of fresh water and the other of a salt solution of known 
density, the two being separated by the slowly evolving pycnocline. The turbulent 
boundary layer was created along the sloping boundary of the tank by oscillating a 
rough mat in the direction of the slope. For each experiment, the slope and the 
amplitude and frequency of the oscillation were kept constant while the evolving 
ambient density field was monitored by measuring the temporal development of its 
variations with depth at  a fixed location with a conductivity probe. 

The general characteristics of the mean circulations observed were essentially the 
same for all slopes considered in this study. After the oscillation of the rough mat had 
started, the turbulent boundary layer developed within a few seconds. The intrusion 
of well-mixed boundary fluid into the interior regions at  the level of the pycnocline 
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FIGURE 3. Representative sets of profiles redrawn after digitization from the chart recorder. 
Increasing voltage indicates increasing density. The sets correspond to: (a) experiment 3 with 8, 
( b )  experiment 10 with 8, and (c)  experiment 6 with 8,. 

was also set up rapidly and continued steadily throughout, as well as the entrainment 
of lower and upper unstratified fluid from the interior into the boundary layer. The 
experiments were concluded when either the density of the initially fresh water at the 
top of the tank or the density of the most saline water at the bottom began to 
increase or decrease respectively from their initial values. The total time elapsed 
varied for each set of experiments with the different slopes and within each set also, 
according to changes in the combination of frequency and amplitude of the 
oscillations. On the average, the total time for each experiment ranged between 30 
and 90 min. 

The conductivity probe was mounted on it movable carriage enabling its 
positioning a t  any point along the tank. The density measurements were recorded on 
an (2, y) flat-bed plotter. A typical set of profiles obtained from the chart recorder in 
a single experiment is shown in figure 3, for each angle. Probe traverses made at 
different horizontal locations confirmed that a t  any instant the distributions 
depicted in figure 3 were basically the same along the whole tank so that the density 
field in the interior fluid was a function of the vertical coordinate only. 

Qualitative observations of the mixing processes and circulation patterns were 
made by injection of various dyes, and the structure of the boundary layer and the 
surrounding regions were observed by means of shadowgraph images. Dye studies 
inside the boundary layer of the same type described in PSS confirmed the existence 



An experiment on boundary mixing. Part 2 

Voltage 

365 

FIGURE 4. Typical density profiles from probe traverses into the turbulent boundary layer. 

of the internal circulation and the subsequent intrusion of mixed fluid into the 
ambient regions for all the slopes considered here. At the start of an experimental 
run, two dyes of different colour were used and one was placed very near the 
oscillating mat and the other at some distance from it. This enabled us to  observe 
that the fluid near the mat was less dense than the outside fluid a t  the same level, 
hence moved upwards, while that near the outer edge of the boundary layer was 
heavier than its surroundings and tended to move downwards. The single intrusion 
flow pattern was a prominent feature of the interior flow of all the experiments 
conducted in this study. 

In  the experiments reported by Ivey & Corcos (1982), with a turbulent boundary 
layer along the vertical end of a tank and with an initial linear ambient stratification, 
a multiple intrusion pattern characterized the flow in the interior. In  the case of an 
initial two-layer stratification, the authors also reported that the initial stage of the 
intrusion of fluid from the boundary layer was of the single jet type that broke up 
into weaker intrusions rapidly, the multiple intrusions appearing below and above 
the level of the initial interface separating the fluids of different densities ; the more 
remote the intrusion from the interface the later i t  appeared. Our observations 
indicated that for the largcst slope angle the tendency was for the intrusive layer to 
be initially wider under similar conditions of thin pycnocline and other laboratory 
parameters but additional smaller-scale intrusions were not evident. Even when the 
initial stratification was not as sharp, though of the same order of the reported values 
of Ivey & Corcos, the single intrusion jet type was clearly observed, its shape 
remaining fairly constant throughout time. 

The average thickness of the turbulent boundary layer achieved in these 
experiments was of the order of 2 cm or less, which made it mechanically difficult to 
measure the mean density field there. As in the initial experiments of PSS, several 
traverses inside the boundary layer were conducted to  confirm the observations from 
dye studies of the internal mean circulation. A set of typical boundary-layer density 
profiles is depicted in figure 4, and while they were not used in a more quantitative 
analysis they show that the fluid a t  the outer edge of the boundary layer is denser 
than the ambient fluid a t  the same level. Probe traverses in the boundary layer 
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performed a t  different levels of the ambient pycnocline region also showed that the 
profiles tended to correspond to well-mixed conditions in the normal direction a t  
about mid-depths in the pycnocline and that the difference between mean densities 
inside and outside the boundary layer, although significant, was small when 
compared with the range of buoyancy in the fluid as a whole. 

It was noted that the density profiles corresponding to an initially sharper 
pycnocline had a gradient that decreased more rapidly with time near the start than 
those for which the initial stratification was weaker. A similar observation was 
reported by Ivey & Corcos (1982). In  their few experiments with a two-layer fluid 
system, the approximately linear central part of the density field had a gradient that 
became weaker more rapidly with time than that which evolved from an initially 
uniform Stratification. 

The vigorous turbulent mixing was confined to the boundary layer along the 
sloping bottom, the edge of which remained sharp over the region of significant 
stratification. The stratified region inside the boundary layer extended beyond the 
corresponding stratified depth in the interior, and its extent in the slope direction 
increased slowly with time as turbulent mixing brought denser fluid upward. Hence, 
as expected, away from the region of the pycnocline the thickness of the boundary 
layer began to increase, becoming a weak function of distance along the slope. The 
characteristic timescale of this change, as well as the change in the width of the 
intrusion, was larger than both the internal boundary-layer timescale and the 
timescale of the ambient density evolution. 

The dependence of H on the slope angle was not measured directly in the present 
work, where the range of the monitored values of boundary-layer thickness were 
between 1 and 2 cm, as in the work of PSS, depending essentially on the intensity of 
the stirring and the stratification, and the differences, when detectable, were well 
within the scatter in the results reported originally. To the accuracy of the 
experiments, the dependence of the thickness of the boundary layer on the slope of 
the bottom boundary, for the range of angles used, was not significant and i t  was the 
combined effects of the oscillation of the rough surface and the stratification in the 
ambient fluid that controlled the boundary-layer thickness. If the boundary-layer 
thickness had scaled according to (16) it  would have varied by a factor of about 2 
between the smallest and largest angles, and this was not observed. This fact, in turn, 
lends support to the revised scale for H given in (21). 

Dye traces in the ambient regions confirmed that the slow interior motion in the 
stratified layer was basically horizontal. The horizontal velocity at a given depth 
essentially varied linearly with horizontal distance, and the vertical velocities were 
very small and independent of horizontal position except in the very narrow top and 
bottom layers. The isopycnals remained horizontal as they spread vertically in 
response to the intrusions, while the isopycnal surface initially a t  height 2, remained 
there throughout an entire experiment (see figure 3, where all profiles pass through 
the same point in the interior; there the density gradient had a maximum). At this 
height, consequently, the net volume flux in the boundary layer vanished. 

3.2. Analysis of results 

Twenty-eight experimental runs were carried out to completion ; eleven with 
8, = 7.1', ten with 8, = 16.35' and seven with O3 = 23.5'. Some experiments were 
mainly devoted to determining the reliability of the instruments. Satisfactory series 
of profiles were obtained in seven, eight and six runs, respectively, and the pertinent 
operating parameters are specified in tables 1 , 2  and 3. Between thirty-five and forty 
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Frequency 
o (rad/s) 

14.68 
20.77 
20.10 
25.94 
15.17 
42.59 
46.65 
42.22 
29.46 
41.32 

Amplitude 

0.262 
0.262 
0.414 
0.409 
0.400 
0.254 
0.254 
0.475 
0.414 
0.414 

a (cm) 
Range of N,,, 

6.134.59 
4.59-3.95 
6.38-3.43 
5.94-3.39 
5.87-3.63 
6.174.08 

(rad/s) 

4.08-3.28 
6.34-3.55 
6.124.62 
4.62-3.46 

Initial density 

top bottom 
(g/cc) (g/cc) 
0.999 1.058 
0.999 1.058 
0.998 1.058 
0.998 1.057 
0.999 1.059 
0.998 1.060 
0.998 1.060 
0.999 1.060 
0.999 1.064 
0.999 1.064 

TABLE 1. Operating parameters for experiments with 8, = 7.10'. Position of probe along the 
tank : 51 .O cm 

Initial density 

Experiment Frequency Amplitude Range of N,,, top bottom 

(a )  1 15.12 0.377 5.6G3.76 0.999 1.065 
2 24.44 0.379 4.19-3.03 0.999 1.062 
3 37.88 0.278 4.89-3.17 0.999 1.063 
4 30.39 0.225 5.84-3.85 1 .om 1.063 

( b )  5 31.40 0.232 5.19-3.83 0.999 1.059 
6 31.44 0.235 6.44-4.02 0.999 1.059 
7 31.74 0.232 5.08-3.45 0.999 1.059 

10 23.90 0.507 4.66-3.22 0.999 1.058 

TABLE 2. Operating parameters for experiments with 8, = 16.35'. (a) Position of probe along 
the tank: 84.7 cm, (b) 127.0 cm 

number w (rad/s) a (em) (rad/s) (g/cc) (g/cc) 

Initial density 

bottom Experiment Frequency Amplitude Range of N,,, top 
number o (rad/s) a (cm) (rad/s) (g.cc) (g/cc) 

1 23.78 0.395 6.16-3.56 0.999 1.059 
2 23.84 0.258 6.4&3.45 0.999 1.058 
3 31.46 0.234 6.93-3.7 7 0.999 1.058 
4 11.90 0.390 6.3 1-3.84 0.999 1.059 
5 15.71 0.391 6.92-3.66 0.999 1.060 
6 23.50 0.501 5.95-3.02 0.999 1.046 

TABLE 3. Operating parameters for experiments with 8, = 23.5'. Position of probe along the 
tank : 150.0 cm 
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FIGURE 5. Typical profiles of W(2) taken a t  three different times throughout an experiment ; the 
maximum of the curves decreases with time. Data correspond to :  ( 0 )  experiment 3 with 8, = 7.1', 
( b )  experiment 10 with O2 = 16.35'. (c) experiment 6 with 8, = 23.5'. 

profiles for each angle were analysed in detail. For each fixed angle, the ambient 
stability frequency N ,  and the frequency w and amplitude of the oscillating mat a, 
were varied from experiment to experiment. The need to preserve the values of these 
parameters used in the experiments with the slope of 9.4', and hence isolate the angle 
dependence, and limitations imposed by the existing equipmcnt imposed constraints 
on the range of parameters actually used in the experiments. Enough data were 
gathered in the present experiments, however. to provide a fairly good base for 
comparison with the experiments at 9.4" and, in addition, to extend the range of the 
values of w and a to lower numbers, also with enough data so that intercomparisons 
within the new set are possible. At the lowest values of the product wa, viscous effects 
in the boundary layer became important, rendering the mean internal circulation 
inefficient. To avoid the influence of viscosit,y, the minimum Reynolds number of the 
turbulent fluctuations in the boundary layer ( = w a d / v )  that  we considered acceptable 
was approximately 400. Results from thesc experiments with a lower value were 
mostly omitted from the data analysis. 

Measurements of the ambient density field were digitized in two manners : at equal 
intervals of depth with AZ = 3 mm in the graph paper ; and a t  equal intervals of 
voltage corresponding to a displacement of 3 mm in horizontal distance on the 
recorder. This yielded data for density as a function of depth and time, p(Z, t ) ,  where 
Z is the vertical coordinate in the tank positive upwards, and data for the height of 
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the density surfaces as a function of density and time c(p, t ) ,  respectively. From the 
first set of data the density gradient ap(Z)/aZ, the stability frequency N ( 2 )  and the 
mass flux were computed as functions of depth 2 for each profile. The derivative of 
the density field was approximated by a centred finite-difference expression, and in 
all cases time differences were replaced by the measured timc interval between probe 
travcrses. Throughout these experiments with an initially thin pycnocline, for all 
different slopes the distributions of N2(2) remained approximately Gaussian. Figure 
5 shows typical profiles of N 2 ( Z )  for each slope value a t  three different times: the 
initial distribution; midway through an experimental run; and at the final time, 
shortly before the experiment was ended. The profiles shown correspond to runs with 
different slopes with all other laboratory parameters closely equal. 

The measurements and direct computations refer to quantities in the ambient 
fluid. Our interest, however, is focused on the transports associated with the 
circulation observed inside the boundary layer and wc can use the measurements to 
obtain estimates of these transports. The arguments that allow us to  relate the 
ambient measurements with boundary-layer transports are those used in the original 
experiments of PSS and summarized here. The volume flux in the boundary layer 
was obtained from application of the incompressibility condition. The total volume 
flux across a horizontal surface a t  any level 2 vanishes, so that the boundary-layer 
volume flux is equal but opposite to  that in the intcrior 

where W is the vertical component of the interior velocity field and X the horizontal 
coordinate, measured from the vertical end of the tank. The interior region is non- 
turbulent and can be regarded as non-diffusive so that the vertical velocity there is 
simply the rate of rise of an isopycnal, t ( p ( X ) ) ,  measured as described above. 

The boundary-layer buoyancy flux can be expressed in terms of quantities 
measured in the interior by integration of the mean buoyancy equation throughout 
the region A ( 2 )  of the tank above the level Z, schematically 

W, t )  U = JintW, t )  W u + l , .  (uW, t )  +D,) dy/sin 6, (33) 

the first term on the right representing the upwards transport in the interior 
associated with the vertical motion there and the second the advection and diffusion 
transports in the boundary layer. Thus the net boundary-layer transport of 
buoyancy is 

(34) 

the integral term being found from the change in the buoyancy field above 2 between 
successive traverses. I n  particular, a t  the level 2, where W(2,)  = 0 and the 
boundary-layer volume flux vanishes, the boundary-layer buoyancy transport is 
entirely the result of turbulent dispersion so that 

a - 
at J,,, 

a 
FB(Z, t )  = t I , , )B(Z> t )  dA - W(z)B(z ,  t ) W ) ,  

(35) 

The volume transport was computed from measurements of the vertical 
displacements of isopycnals between successive probe traverses, as mentioned above 
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FIGURE 6. Three unscaled measurements of volume transport profiles performed with 8, = 16.35'. 
Data. correspond to :  +, experiment 1, profile 5; 0 ,  experiment 2, profile 3; *, experiment 10, 
profile 2. 

and detailed in PSS. An example of typical profiles of computed volume fluxes is 
shown in figure 6. For the slope, O2 = 16.35", the data are from single measurements 
at about the same time in three different experiments corresponding to three 
different values of wa. The boundary-layer volume transport in the direction of the 
slope decreases in magnitude with distance, vanishes a t  the level 2, and increases 
farther along the slope. The figure indicates a linear dependence, and that the curves 
with steeper slopes correspond to higher values of wa. 

The buoyancy transport was calculated from the measurements as detailed in PSS. 
Figure 7 shows a summary of the normalized distributions of total buoyancy 
transport with (Z--Z,)/h for each of the three slopes used in these experiments, 
where h is the half-thickness of the pycnocline. These data represent the contribution 
from turbulent diffusion in the boundary layer, as described above. The downward 
transport of buoyancy due to  turbulent diffusion increases with depth to a maximum 
a t  the level 2, and decreases below that level, as does the vertical gradient of 
buoyancy. Away from the pycnocline region this transport vanishes. The scatter of 
the data below the pycnocline indicates a weak buoyancy transport there, which was 
associated with the presence of large, slow eddies in the lower unstratified region of 
the tank. These eddies were due to the extension of the oscillating mat slightly 
beyond the end of the ramp. We note that the weak slope dependence is apparent 
from the data used in figure 7, since the envelopes in these figures are similar to each 
other although they correspond to  data from different slopes. 

The mean distribution with depth of the total buoyancy transport in the boundary 
layer can be represented as the sum of the diffusive and convective components, as 
indicated by (34). The data yield similar plots (not shown) to that depicted in figure 
17 in PSS. 
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3 0 -3  

FIGURE 7. A summary of the mean distribution of the total rate of change of buoyancy in the area 
of the tank above 2, for the three different slopes of the bottom boundary layer: (a) el = 7.1', ( b )  
8, = 16.35' and (c) 6, = 23.5'. These sets represent the contribution to the mean buoyancy 
transport from turbulent dispersion in the boundary layer. 

3.3. Transports and boundary-layer parameters 
As in PSS, we measure the local dispersive characteristics of the turbulence in terms 
of the lvboratory parameters and express the relations between buoyancy and 
volume transports and the experimental quantities using scaling relations obtained 
from a model for the flow. 

The relation between the overall diffusive transport in the boundary layer and 
quantities measured in the laboratory experiments essentially expresses that 

where 2, is the level at  which the volume flux vanishes and where the total transport 
of buoyancy is entirely due to turbulent dispersion. Data from measurements of the 
density field in the interior a t  the level 2, were used to compute the mass flux 
according to (35) and plotted against laboratory parameters as indicated by (36). 
Details of this calculation can be found in PSS. The values of N(2,) were also 
determined as indicated in PSS. Results from these calculations were plotted and 
least-squares fits to the points were used to obtain the values of the coefficients for 
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FIQURE 8. Measurements of the buoyancy transports across the height 2, scaled according to 
(36) in $3.3, with (a) 8, = 7.1', ( b )  8, = 16.35' and (c) O3 = 23.5'. 

the linear relation. These results are shown in figure 8 (a-c) for each angle studied in 
the present work. 

A least-squares fit to the data yielded the following lines (also shown in the 
figures) : 

(37) i liB(z0) = -0.97 x IO-~[UU~N(Z,)]~, el = 7.1", 

J"(Z0) = -1.42 x [ ~ a d N ( Z o ) ] t ,  8, = 16.35", 

liB(zo) = - 1.78 x 10-2  wad^(^,)]:, 8, = 23.50, 

respectively, with a standard deviation about the lines in all cases of order lo-'. A 
close examination showed that the data from some individual experiments did not 
follow the overall trend of the whole data set in each figure, except perhaps for the 
data in figure 8(c) corresponding to the largest slope 8, = 23.5'. This departure was 
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FIGURE 9. A summary of predicted (-) and experimental (0 )  coefficients as a function of 
bottom slope. 

most prominent for the smallest slope 0, = 7.1" (see figure 8a) .  From the data 
summarized in tables 1-3, we note the relationship between these departures and the 
smallness of the values of oa ,  i.e. when viscous effects became important. The larger 
errors in these measurements were mainly related to two factors : the determination 
of the frequency of the oscillating mat and the viscous effects at low Reynolds 
numbers, these effects being more pronounced at  low angles. 

The numerical coefficients above, expressing the dependence on the slope angle, 
are plotted in figure 9, together with the value 1.35 x lo-' at  8, = 9.4" from PSS. It 
is clear that the buoyancy transport increases with slope over this range. The scaling 
given here predicts the dependence as sin 8 and although the agreement with these 
limited data is only fair, it  is certainly consistent with a monotonic increase. In  the 
figure, the solid line corresponds to a linear regression fit using the present prediction 
(i.e. sine). One can see by eye that a better empirical fit might be something like 
(sine);, but unfortunately, we are unable to provide any reasonable basis for this. 
Such a dependence would be found if 6 were proportional to (sin0)-:, but the only 
justification for this is the PSS scaling which, as we have seen, is untenable at  small 
angles. If sin8 factors are restored to the expressions in (37), the numerical 
coefficients average to 0.064, so that 

FB(Zo) = -0.064 x [wacEN,(Z,)]~sine. (38) 

Now, from (25) and (26), FB = ~ l " s i n 0  at small angles, where 6 = 0.6(wad/N)i, 
which by comparison with (38) indicates that K x lO-'(wad), which seems a very 
reasonable value. Our observations of the shadowgraph images confirmed that the 
size of the largest eddies was approximately equal to d (the spacing of the roughness 
elements) and their velocity must scale as w a ,  the maximum speed in oscillations, 
though fluid velocities themselves were an order of magnitude smaller than this. 
Consequently, the numerical coefficient in K that one would expect is closer to that 
found. Since wad x ~ O K ,  the boundary-layer thickness 6 x 2 ( ~ X ) i  and (38) can be 
written as 

~ ~ ( 2 , )  = - 2.0 x [KN,(Z,)I; sin 8. (39) 
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FIGURE 10. The same profiles as in figure 6 for volume transport measurements, scaled 
according to (40) in 33. 

This empirical coefficient is then determined to about 11-17 % uncertainty, still 
within the bounds of experimental error. 

For the volume fluxes associated with the mean overall convergence the 
assumption of a quasi-stationary balance between the net turbulent dispersion along 
the slope and the overall convergence led to a linear relation between the scaled 
volume fluxes and depth, over the depth range of significant stratification, expressed 
as (cf. (31)) 

F,Nfh 2-2, 
s=- 

(wad)l h ’ 

for each of the angles of the sloping boundary. In  the plot of figure 6, the linearity 
between computed volume fluxes and depth was already apparent. When the same 
profiles were scaled according to (40) and plotted against the normalized vertical 
coordinate (2-Z , ) /h ,  figure 10, the data collapsed about a straight line confirming 
this linearity, much as was the case with data obtained with 8, (cf. figures 11 and 12 
in PSS). The collapse of all the data gathered in these experiments about a straight 
line for each individual angle yielded empirical coefficients that followed the same 
pattern as the coefficients for the buoyancy transport; i.e. they increase with the 
angle of the slope. These data were plotted in the same manner as figure 10 and are 
shown in figure 11 (a-c). Since the volume flux must vanish a t  the top and bottom of 
the tank, away from the region significantly stratified, i.e. as IZ-Z,l/h increases, the 
linear relations break down as can be seen in the figures for values of 12 - Z,l/h larger 
than about 1.0-1.5. The data show the same scatter away from the regions of 
significant stratification as expected, since there the displacements of the isopycnals 
are harder to measure. 

The constants of proportionality between the scaled volume transport and 
(Z-Z,)/h obtained from a least-squares fit of all the data for each angle in figure 11 
were: 1.2 x lo-,, 1.7 x and 1.5 x lo-, for el, 8, and 8, respectively. The coefficient 
for data using 8, is slightly smaller than expected and this may be due to the larger 
scatter in the data shown in figure 11 (c) away from the centre regions of the 
pycnocline. This scatter follows the same characteristics described above but it is 
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FIGURE 11. A summary diagram of the scaled volume fluxes in all sets of experiments at 
(a) 8, = 7.1', (b)  O8 = 16~35' and (c) Ba = 23.5'. 

further accentuated in this case by the effects of viscosity at  low Reynolds numbers. 
In this figure all data obtained from experiments with 8, are included and we can see 
from table 3 that some experimental runs were conducted alf low values of wa. A line 
obtained ignoring these data would have a slightly steeper slope, thus yielding a 
larger numerical coefficient more in agreement with the slope dependence described 

When we restore the slope factors to these lines and use the estimate for K in terms 
of wad we obtain the values of 3.0, 1.8 and 1.2 for el, 8, and Ba respectively. We use 
the data of PSS for 8, to obtain a coefficient of 1.8. These values yield an averaged 
numerical coefficient of 2.0, so that we may write a general relation for the volume 
flux as 

by (31). 

K: 
F J Z )  = 2 . 0 x F s i n 8  

Nih 
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A final note on the numerical coefficients seems pertinent. The average final 
numerical constant is obtained assuming that the contribution of the secondary 
circulation to  the buoyancy and volume transports is negligible, which we have 
shown to be the case for small angles. From the data for the buoyancy flux we note 
that the empirical coefficients for the two smallest angles would yield an average of 
about 2.5, somewhat larger than an average with those for the two largest angles 
which would be about 1.5. This may be due to possible effec!s of the secondary 
circulation on the dispersive characteristics of the boundary layer, although more 
measurements would be necessary to be more conclusive. 

The magnitudes of the fluxes measured do allow us to check a posteriori whether 
the bottom slopes used in these experiments were indeed small enough to satisfy the 
inequality expressed in (18). It was found that for the angles of 7.1" and 9.4", the 
third term was 4-5 YO of the second, rising to 11 YO a t  16.35' and 20 YO a t  23.5'. The 
last case is clearly marginal and indeed this scaling is least successful for it. 
Nonetheless, within the uncertainties in these experiments, we believe that the data 
can be adequately explained by the revised slope dcpendcnce in the limit of small 
slopes presented in this work. 

4. Summary and conclusions 
The experiments presented here are the continuation and conclusion of those 

performed by Phillips et al. (1986). Here the focus was on the previously unexplored 
influence of the bottom slope on the boundary-mixing problem and the subsequent 
intrusion of mixed fluid into the ambient stratified fluid. The general flow patterns 
observed by PSS a t  an angle of 9.4' persist over the range of bottom slopes from 7.1' 
to 23.5" that were accessible to us, and i t  was found that both the buoyancy and 
volume fluxes in the boundary layer increase with increasing slope. This is contrary 
to  the slope dependence suggested (but not tested) by PSS and indicates that the 
boundary buoyancy flux in particular is dominated a t  these low angles by the 
longitudinal turbulent dispersion in the boundary layer rather than the advection by 
the internal countercurrent. A revised scaling of the dependence on bottom slope 
expressed in (21) and (22) is generally consistent with these new experimental results. 

We are grateful to Dr Chris Garrett and two anonymous reviewers for their 
trenchant and constructive criticisms of the original manuscript, and to the National 
Science Foundation for the support of the experiments under grant OCE 8613426. 
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